Part Number Hot Search : 
UF1003E PSE20011 68700 26K1FK HCF45 MV71010 NUP2202W PJSOT05
Product Description
Full Text Search
 

To Download ATXMEGA128A1-AUR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  8303d?avr?02/2013 appendix b ? attiny1634 specification at 125 ? c this document contains information specific to devices operating at temperatures up to 125 ? c. only deviations are covered in this appendix, all other information can be found in the complete datasheet. the complete datasheet can be found at www.atmel.com . attiny1634 8-bit avr ? microcontroller with 16k bytes in-system programmable flash datasheet appendix b
2 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 1. memories the eeprom has an endurance of at least 50,000 write/erase cycles. eeprom may not be programmed at supply voltages below 2v.
3 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 2. lock bits, fuse bits and device signature fuse bits may not be programmed at supply voltages below 2v.
4 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 3. electrical characteristics 3.1 absolute maximum ratings* 3.2 dc characteristics table 3-1. dc characteristics. t a = -40 to +125 ? c operating temperature . . . . . . . . . . . -55 ? c to +125 ? c *notice: stresses beyond those listed under ?absolute maximum ratings? may cause permanent dam- age to the device. this is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. exposure to absolute maximum rat- ing conditions for extended periods may affect device reliability. storage temperature . . . . . . . . . . . . . -65 ? c to +150 ? c voltage on any pin except reset with respect to ground. . . . . . . . . . -0.5v to v cc +0.5v voltage on reset with respect to ground-0.5v to +13.0v maximum operating voltage . . . . . . . . . . . . . . . . 6.0v dc current per i/o pin. . . . . . . . . . . . . . . . . . 40.0 ma dc current v cc and gnd pins . . . . . . . . . . 200.0 ma symbol parameter condition min typ (1) max units v il input low voltage v cc = 1.8 - 2.4v -0.5 0.2v cc (2) v v cc = 2.4 - 5.5v -0.5 0.3v cc (2) v input low voltage, reset pin as reset (4) v cc = 1.8 - 5.5v -0.5 0.2v cc (2) v ih input high-voltage except reset pin v cc = 1.8 - 2.4v 0.7v cc (3) v cc +0.5 v v cc = 2.4 - 5.5v 0.6v cc (3) v cc +0.5 v input high-voltage reset pin as reset (4) v cc = 1.8 - 5.5v 0.9v cc (3) v cc +0.5 v v ol output low voltage (5) except reset pin (7) standard i/o: i ol = 10 ma, v cc = 5v 0.6 v high-sink i/o: i ol = 20 ma, v cc = 5v standard i/o: i ol = 5 ma, v cc = 3v 0.5 v high-sink i/o: i ol = 10 ma, v cc = 3v v oh output high-voltage (6) except reset pin (7) i oh = -10 ma, v cc = 5v 4.3 v i oh = -5 ma, v cc = 3v 2.5 v i lil input leakage current i/o pin v cc = 5.5v, pin low (absolute value) < 0.05 1 (8) a i lih input leakage current i/o pin v cc = 5.5v, pin high (absolute value) < 0.05 1 (8) a
5 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 notes: 1. typical values at +25 ? c. 2. ?max? means the highest value where the pin is guaranteed to be read as low. 3. ?min? means the lowest value where the pin is guaranteed to be read as high. 4. not tested in production. 5. although each i/o port can sink more than the test conditions (10 ma at v cc = 5v, 5 ma at v cc = 3v) under steady state conditions (non-transient), the sum of all i ol (for all ports) should not exceed 100 ma. if i ol exceeds the test con- ditions, v ol may exceed the related specification. pins are not guaranteed to sink current greater than the listed test condition. 6. although each i/o port can source more than the test conditions (10 ma at v cc = 5v, 5 ma at v cc = 3v) under steady state conditions (non-transient), the sum of all i oh (for all ports) should not exceed 100 ma. if i oh exceeds the test condition, v oh may exceed the related specification. pins are not guaranteed to source current greater than the listed test condition. 7. the reset pin must tolerate high voltages when entering and operating in programming modes and, as a conse- quence, has a weak drive strength as compared to regular i/o pins. see ?output driver strength? on page 20 . 8. these are test limits, which account for leakage currents of the test environment. actual device leakage currents are lower. 9. values are with external clock using methods described in ?minimizing power consumption? on page 39 . power reduction is enabled (prr = 0xff) and there is no i/o drive. 10. bod disabled. r pu pull-up resistor, i/o pin v cc = 5.5v, input low 20 50 k ? pull-up resistor, reset pin v cc = 5.5v, input low 30 60 k ? i cc supply current, active mode (9) f = 1mhz, v cc = 2v 0.23 0.4 ma f = 4mhz, v cc = 3v 1.3 1.7 ma f = 8mhz, v cc = 5v 4.3 6 ma supply current, idle mode (9) f = 1mhz, v cc = 2v 0.04 0.1 ma f = 4mhz, v cc = 3v 0.26 0.4 ma f = 8mhz, v cc = 5v 1.1 1.7 ma supply current, power-down mode (10) wdt enabled, v cc = 3v 1.7 12 a wdt disabled, v cc = 3v 0.1 8 a symbol parameter condition min typ (1) max units
6 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 3.3 speed the maximum operating frequency of the device is dependent on supply voltage, v cc . the relationship between supply voltage and maximum operating frequency is piecewise linear, as shown in figure 3-1 . figure 3-1. maximum frequency vs. v cc 3.4 clock table 3-2. accuracy of calibrated 8mhz oscillator notes: 1. see device ordering codes on page 37 for alternatives. 2. accuracy of oscillator frequency at calibrati on point (fixed temperature and fixed voltage). table 3-3. accuracy of calibrated 32khz oscillator 2 mhz 1.8v 5.5v 4.5v 8 mhz 2.7v 6 mhz calibration method target frequency v cc temperature accuracy factory calibration 8.0mhz 2.7 ? 4v 25 ? c to +85 ? c 10% (1) user calibration within: 7.3 ? 8.1mhz within: 1.8 ? 5.5v within: -40 ? c to +85 ? c 1% (2) calibration method target frequency v cc temperature accuracy factory calibration 32khz 1.8 ? 5.5v -40 ? c to +85 ? c 35%
7 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 table 3-4. external clock drive 3.5 system and reset table 3-5. enhanced power-on reset note: 1. values are guidelines only. 2. threshold where device is released from reset when voltage is rising. 3. the power-on reset will not work unless the supply voltage has been below v poa . symbol parameter v cc = 1.8 - 5.5v v cc = 2.7 - 5.5v v cc = 4.5 - 5.5v units min. max. min. max. min. max. 1/t clcl clock frequency 0 2 0 8 0 10 mhz t clcl clock period 500 125 100 ns t chcx high time 200 40 20 ns t clcx low time 200 40 20 ns t clch rise time 2.0 1.6 0.5 ? s t chcl fall time 2.0 1.6 0.5 ? s ? t clcl change in period from one clock cycle to next 2 2 2 % symbol parameter min (1) typ (1) max (1) units v por release threshold of power-on reset (2) 1.1 1.4 1.7 v v poa activation threshold of power-on reset (3) 0.6 1.3 1.7 v sr on power-on slope rate 0.01 v/ms
8 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 4. typical characteristics 4.1 current consumption in active mode figure 4-1. active supply current vs. v cc (internal oscillator, 8 mhz) figure 4-2. active supply current vs. v cc (internal oscillator, 1 mhz) 125 85 25 -40 0 1 2 3 4 5 6 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] i cc [ma] 125 85 25 -40 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] i cc [ma]
9 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-3. active supply current vs. v cc (internal oscillator, 32khz) 4.2 current consumption in idle mode figure 4-4. idle supply current vs. v cc (internal oscillator, 8 mhz) 125 85 25 -40 0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0,045 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] i cc [ma] 125 85 25 -40 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,522,533,544,555,5 v cc [v] i cc [ma]
10 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-5. idle supply current vs. v cc (internal oscillator, 1 mhz) figure 4-6. idle supply current vs. v cc (internal oscillator, 32khz) 125 85 25 -40 0 0,1 0,2 0,3 0,4 0,5 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] i cc [ma] 125 85 25 -40 0 0,01 0,02 0,03 0,04 0,05 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc i cc
11 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 4.3 current consumpti on in power-down mode figure 4-7. power-down supply current vs. v cc (watchdog timer disabled) figure 4-8. power-down supply current vs. v cc (watchdog timer enabled) 125 85 25 -40 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] i cc [ua] 125 85 25 -40 0 2 4 6 8 10 12 1,522,533,544,555,5 v cc [v] i cc [ua]
12 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 4.4 current consumption in reset figure 4-9. reset current vs. v cc (no clock, excluding reset pull-up current) 4.5 current consumpti on of peripheral units figure 4-10. watchdog timer current vs. v cc 125 85 25 -40 0 0,5 1 1,5 2 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] i cc [ma] 125 85 25 -40 0 0,001 0,002 0,003 0,004 0,005 0,006 0,007 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc iccwdt
13 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-11. brownout detector current vs. v cc figure 4-12. sampled brownout detector current vs. v cc 125 85 25 -40 0 5 10 15 20 25 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] i cc [ua] 125 85 25 -40 0 1 2 3 4 5 6 7 8 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] i cc [ua]
14 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-13. aref external reference pin current (v cc = 5v) 4.6 pull-up resistors figure 4-14. i/o pin pull-up resist or current vs. input voltage (v cc = 1.8v) 125 85 25 -40 0 20 40 60 80 100 120 140 160 1,5 2 2,5 3 3,5 4 4,5 5 5,5 aref [v] aref pin current [ua] 0 10 20 30 40 50 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 v op [v] i op [ua] 25 -40 85 125
15 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-15. i/o pin pull-up resistor current vs. input voltage (v cc = 2.7v) figure 4-16. i/o pin pull-up resist or current vs. input voltage (v cc = 5v) 25 -40 85 125 0 20 40 60 80 00,511,522,53 v op [v] i op [ua] 25 -40 85 125 0 20 40 60 80 100 120 140 0123456 v op [v] i op [ua]
16 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-17. reset pull-up resistor current vs. reset pin voltage (v cc = 1.8v) figure 4-18. reset pull-up resistor current vs. reset pin voltage (v cc = 2.7v) 25 -40 85 125 0 10 20 30 40 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 v reset [v] i reset [ua] 25 -40 85 125 0 10 20 30 40 50 60 0 0,5 1 1,5 2 2,5 3 v reset [v] i reset [ua]
17 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-19. reset pull-up resistor current vs. reset pin voltage (v cc = 5v) 4.7 input thresholds figure 4-20. v ih : input threshold voltage vs. v cc (i/o pin, read as ?1?) 25 -40 85 125 0 20 40 60 80 100 120 0123456 v reset [v] i reset [ua] 125 85 25 -40 0 0,5 1 1,5 2 2,5 3 1,522,533,544,555,5 v cc [v] threshold [v]
18 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-21. v il : input threshold voltage vs. v cc (i/o pin, read as ?0?) figure 4-22. v ih -v il : input hysteresis vs. v cc (i/o pin) 125 85 25 -40 0 0,5 1 1,5 2 2,5 3 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] threshold [v] 125 85 25 -40 0 0,1 0,2 0,3 0,4 0,5 0,6 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc hysteris vil vih io
19 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-23. v ih : input threshold voltage vs. v cc (reset pin as i/o, read as ?1?) figure 4-24. v il : input threshold voltage vs. v cc (reset pin as i/o, read as ?0?) 125 85 25 -40 0 0,5 1 1,5 2 2,5 3 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] threshold [v] 125 85 25 -40 0 0,5 1 1,5 2 2,5 3 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] threshold [v]
20 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-25. v ih -v il : input hysteresis vs. v cc (reset pin as i/o) 4.8 output driver strength figure 4-26. v oh : output voltage vs. source current (i/o pin, v cc = 1.8v) 125 85 25 -40 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc hysteresis reset io vil vih 125 85 25 -40 0 0,5 1 1,5 2 5 4 3 2 1 0 i oh [ma] v oh [v]
21 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-27. v oh : output voltage vs. source current (i/o pin, v cc = 3v) figure 4-28. v oh : output voltage vs. source current (i/o pin, v cc = 5v) 125 85 25 -40 0 0,5 1 1,5 2 2,5 3 0 1 8 6 4 2 0 i oh [ma] v oh [v] 125 85 25 -40 0 1 2 3 4 5 0 2 5 1 0 1 5 0 i oh [ma] v oh [v]
22 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-29. v ol : output voltage vs. sink current (i/o pin, v cc = 1.8v) figure 4-30. v ol : output voltage vs. sink current (i/o pin, v cc = 3v) 125 85 25 -40 0 0,2 0,4 0,6 0,8 1 5 4 3 2 1 0 i ol [ma] v ol [v] 125 85 25 -40 0 0,2 0,4 0,6 0,8 1 0 1 8 6 4 2 0 i ol [ma] v ol [v]
23 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-31. v ol : output voltage vs. sink current (i/o pin, v cc = 5v) figure 4-32. v oh : output voltage vs. source current (reset pin as i/o, v cc = 1.8v 125 85 25 -40 0 0,2 0,4 0,6 0,8 1 0 2 5 1 0 1 5 0 i ol [ma] v ol [v] 125 85 25 -40 0 0,5 1 1,5 2 1 8 , 0 6 , 0 4 , 0 2 , 0 0 i oh [ma] v oh [v]
24 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-33. v oh : output voltage vs. source current (reset pin as i/o, v cc = 3v figure 4-34. v oh : output voltage vs. source current (reset pin as i/o, v cc = 5v 125 85 25 -40 0 0,5 1 1,5 2 2,5 3 1 8 , 0 6 , 0 4 , 0 2 , 0 0 i oh [ma] v oh [v] 125 85 25 -40 0 1 2 3 4 5 1 8 , 0 6 , 0 4 , 0 2 , 0 0 i oh [ma] v oh [v]
25 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-35. v ol : output voltage vs. sink current (reset pin as i/o, v cc = 1.8v) figure 4-36. v ol : output voltage vs. sink current (reset pin as i/o, v cc = 3v) 25 -40 0 0,2 0,4 0,6 0,8 1 1 8 , 0 6 , 0 4 , 0 2 , 0 0 i ol [ma] v ol [v] 125 85 125 85 25 -40 0 0,2 0,4 0,6 0,8 1 2 5 , 1 1 5 , 0 0 i ol [ma] v ol [v]
26 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-37. v ol : output voltage vs. sink current (reset pin as i/o, v cc = 5v) 4.9 bod figure 4-38. bod threshold vs te mperature (bodlevel = 4.3v) 125 85 25 -40 0 0,2 0,4 0,6 0,8 1 00,511,522,533,54 i ol [ma] v ol [v] v cc rising v cc falling 4,16 4,18 4,2 4,22 4,24 4,26 4,28 4,3 4,32 4,34 -40 -20 0 20 40 60 80 100 120 140 temperature [c] threshold [v]
27 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-39. bod threshold vs te mperature (bodlevel = 2.7v) figure 4-40. bod threshold vs te mperature (bodlevel = 1.8v) v cc rising v cc falling 2,62 2,64 2,66 2,68 2,7 2,72 2,74 2,76 -40 -20 0 20 40 60 80 100 120 140 temperature [c] threshold [v] v cc rising v cc falling 1,75 1,76 1,77 1,78 1,79 1,8 1,81 1,82 -40 -20 0 20 40 60 80 100 120 140 temperature [c] threshold [v]
28 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-41. sampled bod threshold vs temperature (bodlevel = 4.3v) figure 4-42. sampled bod threshold vs temperature (bodlevel = 2.7v) v cc rising v cc falling 4,25 4,26 4,27 4,28 4,29 4,3 4,31 4,32 4,33 -40 -20 0 20 40 60 80 100 120 140 temperature [c] threshold [v] v cc rising v cc falling 2,7 2,71 2,72 2,73 2,74 2,75 2,76 -40 -20 0 20 40 60 80 100 120 140 temperature [c] threshold [v]
29 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-43. sampled bod threshold vs temperature (bodlevel = 1.8v) 4.10 bandgap voltage figure 4-44. bandgap voltage vs. supply voltage v cc rising v cc falling 1,77 1,775 1,78 1,785 1,79 1,795 1,8 -40 -20 0 20 40 60 80 100 120 140 temperature [c] threshold [v] 105 85 25 -40 1,04 1,045 1,05 1,055 1,06 1,065 1,07 1,075 1,08 1,085 1,5 2 2,5 3 3,5 4 4,5 5 5,5 vcc [v] bandgap [v]
30 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-45. bandgap voltage vs. temperature (v cc = 3.3v) 4.11 reset figure 4-46. v ih : input threshold voltage vs. v cc (reset pin, read as ?1?) 1,04 1,045 1,05 1,055 1,06 1,065 1,07 -40 -20 0 20 40 60 80 100 120 140 temperature [c] bandgap voltage [v] 125 85 25 -40 0 0,5 1 1,5 2 2,5 3 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] threshold [v]
31 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-47. v il : input threshold voltage vs. v cc (reset pin, read as ?0?) figure 4-48. v ih -v il : input hysteresis vs. v cc (reset pin ) 125 85 25 -40 0 0,5 1 1,5 2 2,5 3 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] threshold [v] 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] hysteresis [v] 125 85 25 -40
32 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-49. minimum re set pulse width vs. v cc 4.12 analog comparator offset figure 4-50. analog comparator offset vs. v in (v cc = 5v) 125 85 25 -40 0 500 1000 1500 2000 2500 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] pulsewidth [ns] 125 85 25 -40 0 10 20 30 40 50 60 70 80 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 v in [v] offset [mv]
33 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-51. analog comparator offset vs. v cc (v in = 1.1v) figure 4-52. analog comparator hysteresis vs. v in (v cc = 5.0v) 125 85 25 -40 0 1 2 3 4 5 6 7 8 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] offset [mv] 125 85 25 -40 0 5 10 15 20 25 30 35 40 45 00,511,522,533,544,55 v in [v] hysteresis [mv]
34 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 4.13 internal oscillator speed figure 4-53. calibrated oscillator frequency (nominal = 8mhz) vs. v cc figure 4-54. calibrated oscillator freque ncy (nominal = 8mhz) vs. temperature 125 85 25 -40 7,9 8 8,1 8,2 8,3 8,4 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] frequency [mhz] 5.0 v 3.0 v 7,9 7,95 8 8,05 8,1 8,15 8,2 -40 -20 0 20 40 60 80 100 120 140 temperature [] frequency [mhz]
35 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-55. calibrated oscillator frequency (nominal = 1mhz) vs. v cc figure 4-56. calibrated oscillator freque ncy (nominal = 1mhz) vs. temperature 125 85 25 -40 0,97 0,98 0,99 1 1,01 1,02 1,03 1,04 1,05 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] frequency [mhz] 5.0 v 3.0 v 1.8 v 970000 980000 990000 1000000 1010000 1020000 1030000 -40 -20 0 20 40 60 80 100 120 140 temperature [] frequency
36 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 figure 4-57. ulp oscillator frequency (nominal = 32khz) vs. v cc figure 4-58. ulp oscillator frequency (nominal = 32khz) vs. temperature 125 85 25 -40 27000 28000 29000 30000 31000 32000 33000 1,5 2 2,5 3 3,5 4 4,5 5 5,5 v cc [v] f rc [hz] 27000 28000 29000 30000 31000 32000 33000 -40 -20 0 20 40 60 80 100 120 140 temperature [] f rc [hz]
37 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 5. ordering information notes: 1. for speed vs. supply voltage, see section 3.3 ?speed? on page 6 . 2. all packages are pb-free, halide-free and fully green, and they comply with the european directive for restriction of hazardous substances (rohs). 3. denotes accuracy of the internal oscillator. see table 3-2 on page 6 . 4. code indicators: ? f: matte tin ? r: tape & reel 5. can also be supplied in wafer form. contact your local atmel sales office for ordering information and minimum quantities. 5.1 attiny1634 speed (mhz) (1) supply voltage (v) temperature range package (2) accuracy (3) ordering code (4) 12 1.8 ? 5.5 industrial (-40 ? c to +125 ? c) (5) 20m1 10% attiny1634-mf 10% attiny1634-mfr package type 20m1 20-pad, 4 x 4 x 0.8 mm body, quad flat no- lead / micro lead frame package (qfn/mlf)
38 attiny1634 [datasheet appendix b] 8303d?avr?02/2013 6. datasheet revision history revision history 8303d: appendix b ? 10/12 initial revision
39 attiny1634 [datasheet appendix b] 8303d?avr?02/2013
atmel corporation 1600 technology drive san jose, ca 95110 usa tel: (+1) (408) 441-0311 fax: (+1) (408) 487-2600 www.atmel.com atmel asia limited unit 01-5 & 16, 19f bea tower, millennium city 5 418 kwun tong roa kwun tong, kowloon hong kong tel: (+852) 2245-6100 fax: (+852) 2722-1369 atmel munich gmbh business campus parkring 4 d-85748 garching b. munich germany tel: (+49) 89-31970-0 fax: (+49) 89-3194621 atmel japan g.k. 16f shin-osaki kangyo bldg 1-6-4 osaki, shinagawa-ku tokyo 141-0032 japan tel: (+81) (3) 6417-0300 fax: (+81) (3) 6417-0370 ? 2013 atmel corporation. all rights reserved. / rev.: 8303d?avr?02/2013 disclaimer: the information in this document is provided in co nnection with atmel products. no lic ense, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of atmel products. exc ept as set forth in the atmel terms and conditions of sales locat ed on the atmel website, atmel assumes no liability whatsoever and disclaims any express, implied or statutory warranty relating to its products including, but not li mited to, the implied warranty of merchantability, fitness for a particular purpose, or non-infringement. in no event shall atmel be liable for any d irect, indirect, consequential, punitive, special or incide ntal damages (including, without limitation, damages for loss and profits, business i nterruption, or loss of information) arising out of the us e or inability to use this document, even if at mel has been advised of the possibility of suc h damages. atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the ri ght to make changes to specifications and products descriptions at any time without notice. atmel does not make any commitment to update th e information contained herein. un less specifically provided oth erwise, atmel products are not suitable for, and shall not be used in, automotive applications. atmel products are not intended, authorized, or warranted for use as components in applications intend ed to support or sustain life. atmel ? , atmel logo and combinations thereof, enabling unlimited possibilities ? , avr ? , tinyavr ? and others are registered trademarks or trademarks of atmel corporation or its subsidiaries. other terms and product names may be trademarks of others.


▲Up To Search▲   

 
Price & Availability of ATXMEGA128A1-AUR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X